Easy Synthesis and Different Conformational Behavior of Purine and Pyrimidine β -D-glycero-Pent-2'-enopyranosyl Nucleosides¹

Bogdan Doboszewski,[†] Norbert Blaton,[‡] and Piet Herdewijn*,[†]

Rega Institute for Medical Research and Department of Pharmacy, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium

Received May 30, 1995 (Revised Manuscript Received September 21, 1995*)

Condensation of 3,4-bis-O-(p-nitrobenzoyl)-D-xylal with purines and pyrimidines (A, C, 6-chloropurine, G, T, U) without externally added acid catalyst leads to the 2',3'-unsaturated pentopyranosyl nucleosides in preparatively acceptable yields of both β and α anomers and near complete suppression of formation of the 3'-substituted 1',2'-unsaturated regioisomers. Anomeric configurations of these analogues of nucleosides have been established for the 4'-O-deprotected derivatives by way of ¹³C NMR. In all nine anomeric pairs the signals of the carbon atoms C-5' in α anomers are shifted upfield when compared with the corresponding signals of the β anomers. Coupling constants J_{45ax} indicate pseudoaxial positions of purines in **33–40**, **45**, and **46**. This is rationalized in terms of a $\pi - \sigma_{\text{C},1'-N,9}^{\text{c}}$ resonance and represents a case where aglycons occupy pseudoaxial positions via a mechanism different than the anomeric effect. The same coupling constants of the α -pyrimidines **30**, **32**, **42**, and **44** indicate ${}^{4}H_{0} \leftrightarrow {}^{0}H_{4}$ equilibrium with a marginal preference toward the ${}^{0}\text{H}_{4}$ form, whereas the β -pyrimidines 29, 31, 41, and 43 show a preference toward ${}^{0}\text{H}_{4}$ probably due to steric interactions.

Reaction of 1,2-unsaturated carbohydrates or glycals² with nucleophilic agents mediated by acids yielding 2,3unsaturated glycosides (accompanied by 1,2-unsaturated regioisomers) (Scheme 1) is known as Ferrier rearrangement.³⁻⁵ The reaction is believed to proceed via a delocalized cation, 1, formed by departure of the acyloxy moiety from a starting glycal followed by attack of nucleophile from a side which provides maximum continuous overlap of orbitals in a way from transition state to product, i.e., leading to α -glycosides (Scheme 2). This overlap lowers the activation energy versus an alternative transition state leading to β -glycosides. (This idea has been put forward by Corey and Sneen in order to explain preferential formation of axial products during α halogenation of ketones⁶ and later used to rationalize stereochemical aspects of reactivity of 4,6-O-benzylidene-1,2,3-trideoxy-3-C-methylene-D-erythro-hex-1-enopyranose activated by iodonium ions during a synthesis of saccharose⁷ and also for 3,4,6-tri-O-acetyl-2-deoxy-2nitroso glycals as starting compounds for syntheses of glycosides and 2-amino-2-deoxyglycosides having a 1,2cis arrangement.⁸) Also, β -glycosides can be anomerized to α -glycosides in acidic medium, favoring therefore formation of the latter, additionally stabilized by the anomeric effect. In general, α -glycosides of O-, N-, and

S-nucleophiles are predominant products of the Ferrier rearrangements. This is not so for C-nucleophiles since the resulting C-glycosides lack anomeric stabilization in general.^{9,10} Also, transition metal catalysts frequently employed for their formation alter the mechanism of a reaction.¹¹⁻¹⁴ Ferrier rearrangement can also proceed autocatalytically. Several nucleophilic agents react with acetylated glycals in the absence of externally added catalysts to give 2,3-unsaturated glycosides.² For example, phenol reacts with tri-O-acetyl glucal in boiling chlorobenzene to furnish 80% yield of the anomeric unsaturated glucosides ($\alpha:\beta = 85:15$),¹⁵ but methanol or ethanol requires elevated temperature (180 °C).¹⁶ In these cases an effective catalyst can be acetic acid generated during thermal decomposition of a substrate, or a reaction involves initial migration of a double bond to give species 4 (Scheme 3) which reacts further to

Rega Institute for Medical Research.

[‡] Department of Pharmacy.

[®] Abstract published in Advance ACS Abstracts, November 1, 1995. (1) Preliminary communication: Doboszewski, B.; Blaton, N.; Herdewijn, P. Tetrahedron Lett. **1995**, 36, 1321–1324. The author has deposited atomic coordinates for 31, 37, and 45 with the Cambridge Crystallographic Data Centre. The coordinates can be obtained, on request, from the Director, Cambridge Crystallographic Data Centre, 12 Union RD., Cambridge, CB2 1EZ U.K. (2) Helferich, D. Adv. Carbohydr. Chem. **1952**, 7, 209–245. (3) Ferrier, R. J. Adv. Carbohydr. Chem. **1965**, 20, 67–137.

⁽⁴⁾ Ferrier, R. J. Adv. Carbohydr. Chem. 1969, 24, 199-266.

⁽⁵⁾ Ferrier, R. J. In *The Carbohydrates, Chemistry and Biochemistry*; Pigman, W., Horton, D., Wander, J. D., Eds.; Academic Press: New York, 1980; Vol. IB, pp 843-879.

⁽⁶⁾ Corey, E. J.; Sneen, R. A. J. Am. Chem. Soc. 1956, 78, 6269-6278

⁽⁷⁾ Fraser-Reid, B.; Iley, D. E. Can. J. Chem. 1979, 57, 645-652. (8) Banoub, J.; Boullanger, P.; Lafont, D. Chem. Rev. 1992, 92, 1167-1195.

⁽⁹⁾ Kirby, A. J. The Anomeric Effect and Related Stereoelectonic Effects of Oxygen; Springer-Verlag: New York, 1983.

 ⁽¹⁰⁾ Juaristi, E.; Cuevas, G. Tetrahedron 1992, 48, 5019–5087.
 (11) Daves, G. D., Jr. Acc. Chem. Res. 1990, 23, 201–206.

⁽¹²⁾ Postema, M. H. D. Tetrahedron 1992, 48, 8545-8599

⁽¹³⁾ Tang, P. C. Tutorial: Chemistry of C-Glycosides. Presented at the 206th National Meeting of the American Chemical Society,

Chicago, IL, 1993.

 ⁽¹⁴⁾ Javamillo, C.; Knapp, S. Synthesis 1994, 1–20.
 (15) Brakta, M.; Lhosta, P.; Sinou, D. J. Org. Chem. 1989, 54, 1890– 1896

⁽¹⁶⁾ Ferrier, R. J. J. Chem. Soc. 1964, 5443-5449.

furnish 2,3-unsaturated products.¹⁷ Compounds of the type 4 can be indeed prepared by either thermal or acidcatalyzed isomerization of acetylated glycals^{18,19} (Scheme 3). It should be noted that protic acids can promote 1,2addition to a double bond of a starting acetylated glycal. In order to suppress this reaction, Ferrier and co-workers have introduced BF₃·Et₂O as a catalyst.¹⁷ Other catalysts used include J_2 , SnBr₄, EtAlCl₂, HCl, H₂SO₄,²⁰ SnCl₄,²¹ SbCl₅,²² CCl₃CO₂H,²³ CF₃CO₂H,²⁴ LiCl₄-trityl-perchloride,²⁵ and ZnCl₂.²⁶

Regiochemical aspects of Ferrier rearrangement (C-1 vs C-3 reaction, Scheme 1) have been rationalized in terms of the hard acids-soft bases principle: carbon atom C-3 in cation 1 is soft, whereas C-1 is hard.²⁷ Hard bases like alcohols react preferentially at C-1 to form 2 and soft bases, e.g., 6-chloropurine of N-benzoyladenine, at C-3 to form 3. Using nucleobases as nucleophilic agents, formation of both C-1- and C-3-substituted products has been frequently observed (see below). In these cases it can be speculated that either a system has not reached an equilibrium [formation of **3** as the most stable regioisomer (2',3'-Unsaturated hexopyranosyl nucleosides of a type 2 have been published to rearrange to 3 in acidic media.¹⁹ The same is true for pentopyranosyl nucleosides.²⁸)] or a nucleobase displays a boarderline character. Ferrier rearrangement has been used to prepare 2',3'-unsaturated hexopyranosyl nucleosides as α,β mixtures accompanied by 3'-substituted product(s).^{19,22-26,29-31}

Data on reactions of pentopyranosyl glycals with heterocyclic bases mediated by acid catalyst is much more limited and inconsistent. Either only α anomer³² (using thymine and di-O-acetyl-D-xylal) or only 3'-substituted 1',2'-unsaturated product³³ (using N-benzoyladenine and the same xylal) has been reported. In most cases, however, anomeric mixtures of 2',3'-unsaturated pento-

- (17) Ferrier, R. J.; Prasad, N. J. Chem. Soc. C 1969, 570-575.
- (18) Ferrier, R. J.; Prasad, N.; Sankey, G. H. J. Chem. Soc. C 1968, 974-977.
- (19) Ferrier, R. J.; Ponpipom, M. M. J. Chem. Soc. C 1971, 553-559.
- (20) Banik, B. K.; Manhas, M. S.; Bose, A. K. J. Org. Chem. 1994, 59, 4714-4716 and references therein.
- (21) Grynkiewicz, G.; Priebe, W.; Zamojski, A. Carbohydr. Res. 1979, 68, 33-41.
- (22) Kondo, T.; Nakai, H.; Goto, T. Tetrahedron 1973, 29, 1801-1806.
- (23) Leutzinger, E. E.; Robins, R. K.; Townsena, L. B. Tetrahedron Lett. **1968**, 4475–4478.
- (24) Fuertes, M.; Garcia-Muñoz, G.; de Las Hevas, F. G.; Madroñero, R.; Stud, M.; Rico, M. Tetrahedron **1972**, 28, 4099-4112.
- (25) Herscovici, J.; Montserret, R.; Antonakis, K. Carbohydr. Res. 1988, 176, 219-229.
- (26) Sakaguchi, M.; Larroquetta, C. A.; Agrawal, K. C. J. Med. Chem. 1983, 26, 20-24.
 - (27) Priebe, W.; Zamojski, A. Tetrahedron 1980, 36, 287-297.
- (28) Fuertes, M.; Garcia-Muñoz, G.; Madroñero, R.; Stud, M. J.
 Heterocycl. Chem. 1971, 8, 261-264.
 (29) Ueda, T.; Watanabe, S.-J. Chem. Pharm. Bull. 1985, 33, 3689-
- (30) Ferrier, R. J.; Ponpipom, M. M. J. Chem. Soc. C **1971**, 560-
- (30) Ferrier, N. S., Fonpipoli, M. M. S. Chem. Soc. C 1971, 500 562.
- (31) Leutzinger, E. E.; Meguro, T.; Townsend, L. B.; Shuman, D. A.; Schweizer, M. P.; Stewart, Ch. M.; Robins, R. K. J. Org. Chem. **1972**, *37*, 3695-3703.
- (32) Bessodes, M.; Egron, M.-J.; Filippi, J.; Antonakis, K. J. Chem. Soc., Perkin Trans. I 1990, 3035-3039.
- (33) Khirpatsh, N. B.; Mikhailopulo, J. A.; Akhrem, A. A. Khim. Geterotsikl. Soedin. 1982, 111-117.

pyranosyl nucleosides are formed accompanied by 3'substituted 1',2'-unsaturated product(s).³⁴⁻³⁶ 1,2-Additions without migration of a double bond have been recorded.³⁷⁻³⁹ Elimination of either benzoic acid or hydrogen chloride molecules from functionalized 2-deoxypentopyranoses have been reported to generate glycals in situ, which further reacted to yield olefinic pentopyranosyl nucleosides.^{40,41} $\alpha(\beta)$ -2',3'-Unsaturated pentopyranosyl nucleosides can be converted to $\beta(\alpha)$ counterparts (in the presence of trifluoroacetic acid) accompanied by the 3'-substituted products like **3**,²⁸ which do not rearrange back as the most stable compounds.

It seems that there is no general method to make β/α configured 2',3'-unsaturated pentopyranosyl nucleosides with acceptable preparative yields and β/α ratio. A reason for this is the added acid catalyst which promotes formation of the desirable β/α -2',3'-olefinic products 2 and also undesirable products 3. Furthermore, it transforms **2** into **3** and anomerizes kinetically formed β anomers into α anomers. Omitting a catalyst therefore could be a way to suppress formation of **3** although formation of the α anomer can still be favored (for O-glycosides at least¹⁵). Several facts need to be pointed out here. (a) Furanosyl glycal 5 reacts with methanol at room temperature without acid catalyst to furnish a glycoside, 6, believed to be β^{42} (Scheme 4). (b) It has been suggested that some β selectivity could be obtained during early stage of reaction of glycals with nucleophiles as shown in 7, where Lewis acid catalyst coordinates both a leaving group and an incoming nucleophile.⁴³ (c) The concept of

 S_N2' reactivity (without a catalyst) has been realized using reactive glycals 8 and 9,⁴⁴ which react with sodium methoxide to furnish products 10 and 11, respectively (Scheme 5). In both cases the methoxide moiety enters on the anomeric position in a syn manner with respect

- (34) Fuertes, M.; Garcia-Muñoz, G.; Madroñero, R.; Stud, M.; Rico, M. Tetrahedron 1970, 26, 4823-4837.
- (35) Fuertes, M.; García-Muñoz, G.; Madroñero, R.; Stud, M.; Rico, M. Tetrahedron 1972, 28, 623-635.
- (36) Alonso, G.; Fuertes, M.; Garcia-Muñoz, G.; Madroñero, R.; Stud, M. J. Med. Chem. 1973, 16, 1056-1057.
- (37) Bowles, W. A.; Robins, R. K. J. Am. Chem. Soc. **1964**, 86, 1252–1253.
- (38) Nagasawa, N.; Kumashiro, J.; Takenishi, T. J. Org. Chem. 1967, 32, 251–252.
- (39) Leutzinger, E. E.; Bowles, W. A.; Robins, R. K.; Townsend, L. B. J. Am. Chem. Soc. **1968**, 90, 127-136.
- (40) Mikhailov, S.; Efimtseieva, E. Khim. Geterotsikl. Soedin. 1988, 947-951.
- (41) Baud, M. V.; Chavis, C.; Lucas, M.; Imbach, J.-L. Tetrahedron 1991, 47, 9993-10002.
- (42) Ness, R. K.; Fletcher, H. G., Jr. J. Org. Chem. 1963, 28, 435-437.
- (43) Dunkerton, L. V.; Addair, N. K.; Euske, J. M.; Brady, K. T.;
 Robinson, P. D. J. Org. Chem. 1988, 53, 845-850.
 (44) Sakakibara, T.; Takai, J.; Yamamoto, A.; Iizuka, H.; Hirasawa,
- (44) Sakakibara, T.; Takai, J.; Yamamoto, A.; Iizuka, H.; Hirasawa K.; Ishido, Y. Tetrahedron Lett. **1990**, *31*, 3749–3752.

^a Asterisk denotes that the compound was originally published as an L-isomer.

to a leaving group at the carbon atom C-3. (d) ¹H NMR data of xylals uniformly point out that the compounds adapt the preponderant ${}^{5}H_{4}$ conformation 12 (up to 85% of the equilibrium mixture⁴⁵) with pseudoaxial and axial functionalities at the carbon atoms C-3 and C-4, respectively (Chart 1). Ferrier and Sankey rationalized this in terms of "allylic effect",⁵¹ a tendency of allylic acetoxy or benzoyloxy groups to adopt a pseudoaxial orientation in unsaturated carbohydrates. Many other examples are known where electronegative substituents on the allylic position occupy preferentially an axial orientation via a mechamism different than the anomeric effect, being either a $\sigma^* - \pi$ stabilization or a vinylogous anomeric effect.9,10,52-54

Facts a-d suggest that if a good leaving group is put on position C-3 of D-xylal, e.g., p-nitrobenzoyl as in compound 13, then a nucleobase could approach the anomeric position from the same side to provide some β selectivity, without mediation of an acid catalyst (Scheme 6). If such stereochemical outcome would be a consequence of a stereoelectronic effect or a result of conformational properties of a transition state is not clear. This issue has been extensively discussed. 55,56 p-Nitrobenzoic acid liberated during a reaction turned out to be too weak

to promote $2 \rightarrow 3$ rearrangement (Scheme 1) (see below). One could therefore anticipate formation of β/α anomeric mixtures only. This reasoning stimulated us to investigate the reaction of nucleobases with bis-O-(p-nitrobenzoyl)-D-xylal without added catalysts. We needed the β -Dglycero-pent-2'-enopyranosyl nucleosides as starting materials to introduce the 3'-hydroxymethyl appendix and eventually invert a configuration at the 4'-position to obtain nucleoside analogues for antisense/antiviral studies.⁵⁷ Also, since the nucleobases in the 2',3'unsaturated pentopyranosyl nucleosides occupy both an anomeric position and an allylic position, a study of the NMR spectra of the target compounds might give us insight in the predominant factor influencing the conformation of these compounds.

The starting compound 13, a highly crystalline 3,4-bis-O-(p-nitrobenzoyl)-D-xylal, has been prepared from Dxylal^{58,59} (p-nitrobenzoyl chloride, pyridine, DMAP). The compound adopts preferentially the conformation ${}^{5}\mathrm{H}_{4}$ as evidenced by a coupling pattern of the protons H4, $H5_{eq}$, and $H5_{ax}$ (in C₆D₆: $J_{4,5ax} = 3.1$ Hz, $J_{4,5eq} = 1.5$ Hz). The following nucleobases have been used throughout this study: N^6 -benzoyladenine, 60,61 6-chloropurine, N^4 -acetyland N4-benzoylcytosine,62 N2-isobutyryl-O6-[2-(p-nitrophenyl)ethyl]guanine,⁶³ thymine, N³-benzoylthymine,⁶⁴ uracil, and N^3 -benzoyluracil⁶⁴. When these bases, their trimethylsilyl derivatives, or their sodium salts were incubated with 13 in dimethylformamide at elevated temperature without addition of any acid catalyst, anomeric mixtures of 2',3'-unsaturated pentopyranosyl nucleosides 14A were formed (Scheme 7).

Preparative yields varied between 22% and 76% and anomeric ratios between $\beta/\alpha = ca$. 2/1 and 1/2. Relevant data are listed in Table 1. Only in the case of Nbenzoylcytosine were we able to isolate a 3'-substituted product, 18 (14C, $B = C^{Bz}$), of unspecified configuration formed in ca. 3% yield. Our result with N-benzoyladenine and thymine (only formation of the 2',3'-unsaturated products α, β -22 and -28, respectively) stays in sharp contrast with the published data where exclusive formation of 3'-substituted 1',2'-unsaturated product(s)^{33,41} or the α anomer³² has been reported. Uracil yielded two N^1, N^3 -bis-substituted products, **27A**, **B**, besides the β, α products 25 and 26. In an attempt to suppress this bisglycosylation, we used N^3 -benzoyluracil. Unexpectedly complex reaction mixtures were obtained, even though formation of 27A,B had been suppressed. Also, condensation using trimethylsilylated N^3 -benzoylthymine was more complex than TMS(T), and both pathways have not

York, 1968; Vol. I, pp 183-187. (62) Brown, D. M.; Todd, A.; Vandarajan, S. J. Chem. Soc. 1956,

2384 - 2387.

(63) Jenny, T. F.; Schneider, K. Ch.; Benner, S. A. Nucleosides Nucleotides 1992, 11, 1257-1261.

(64) Cruickshank, K. A.; Jiricny, J.; Reese, C. B. Tetrahedron Lett. 1984, 25, 681-684.

 ⁽⁴⁵⁾ Haasnoot, C. E. G. J. Am. Chem. Soc. 1993, 111, 1460-1468.
 (46) Chalmers, A. A.; Hall, R. H. J. Chem. Soc., Perkin Trans. I 1974, 728 - 732.

⁽⁴⁷⁾ Rico, M.; Santoro, J. Org. Magn. Reson. 1976, 8, 49-55. (48) Bock, K.; Lundt, I.; Pedersen, Ch. Acta Chem. Scand. 1969, 23,

^{2083-2094.} (49) Lemieux, R. U.; Nagabhushan, T. L.; O'Neill, J. K. Can. J. Chem. 1968, 46, 413-418.

⁽⁵⁰⁾ Ferrier, R. J.; Sankey, G. H. J. Chem. Soc. C 1966, 2345-2349. (51) Katsuhara, M.; Wakahara, S.; Tokuyama, K. Bull. Chem. Soc.

Jpn. 1968, 41, 1208–1220. (52) Zefirov, N. S. Tetrahedron 1977, 33, 3193–3202.

⁽⁵³⁾ Denmark, S. E.; Dappen, M. S. J. Org. Chem. 1984, 49, 798-806

⁽⁵⁴⁾ Denmark, S. E.; Dappen, M. S.; Sear, N. L.; Jacobs, R. T. J. Am. Chem. Soc. **1990**, *112*, 3466–3474. (55) Magid, R. M. Tetrahedron **1980**, *36*, 1901–1930.

⁽⁵⁶⁾ Deslongchamps, P. Stereoelectronic Effects in Organic Chemistry; Pergamon Press: New York, 1986; Chapter 5.
(57) Herdewijn, P.; De Winter, H.; Doboszewski, B.; Verheggen, I.;

Augustyns, K.; Hendrix, C.; Saison-Behmoaras, T.; De Ranter, C.; Van Aerschot, A. In Carbohydrate Modifications in Antisense Research; Sanghyi, Y. S., Cook, P. D., Eds.; ACS Symposium Series 580; American Chemical Society: Washington, DC, 1994; pp 80-99. (58) Weigand, F. Methods in Carbohydrate Chemistry; Academic

Press: New York, 1962; Vol. I, pp 182–185. (59) Somsak, L.; Némth, J. J. Carbohydr. Chem. 1993, 12, 679– 68**4**.

⁽⁶⁰⁾ Kohn, P.; Samaritano, R. H.; Lerner, L. M. In Synthetic Procedures in Nucleic Acid Chemistry; Zorbach, W. W., Tipson, R. S., Eds.; John Wiley & Sons, Inc.: New York, 1968; Vol. I, pp 117-122.
(61) Ness, R. K. In Synthetic Procedures in Nucleic Acid Chemistry;

Zorbach, W. W., Tipson, R. S., Eds.; John Wiley & Sons, Inc.: New

Scheme 7

Table 1. Results of the Condensation Reaction of Different Bases with 3,4-di-O-(p-nitrobenzoyl)-D

Entry	Base	Reactive form,	Product	Total yield of	β:α
		reaction time,	number	14A, %	
		temperature			
	NHBz				
1	, C ^{Bz}	TMS derivative	16(β); 17(α)	73%	1:1 a
	O H	15 min, bp			
	NHAC				
2	, CAC	TMS derivative,	19(α,β)	52%	1.1b
	ONH	5 h, 110°			
3	ONPEC	(i) TMS derivative		76%	47:26 ^d
	, G ^{NPE^C}	40 min, bp	20(β); 21(α)		
4		(ii) used as such		60%	1:1
		45 min, bp			
5	NHBz İ	(i) used as such		60%	25:20d
	ABz	10 min, bp	22(α,β)		
6	N N N	(ii) TMS-derivative		28-44% ^e	ca 2:1
		10 min, bp			
7		(i) used as such		57%	1:1ª
		10 min, bp	23(β); 24(α)		
8	N ^{MM} N ^{MM}	(ii) Na salt		39%	1:2
	_	15 min, bp			
9	FN J	Na salt	25(β); 26(α)	23%	3:5ª
	₩ H	1 h, bp			
	С.,сн				
10	HN	TMS derivative	28(α,β)	48%	1:1a
	U' N' H	7 h, 110°			

^a Separable as 4'-O-nitrobenzoates. ^b Unseparable. ^c NPE, (p-nitrophenyl)ethyl. ^d Separation much easier after 4'-deesterification (catalytic NaOMe in dioxane-HOMe). ^e Inconsistent yields and β/α ratios.

been further examined. It is noteworthy that only N^1 (pyrimidines) and N^9 (purines) regioisomers have been formed in these condensations. Moderate yields are not detrimental because of easy availability of the starting glycal **13** and simplicity of the condensation procedure.

These results can be rationalized as follows. Due to a favorable conformation of the glycal **13** and its sufficient reactivity, both purines and pyrimidines react with it as shown in Scheme 6 during initial stages of reaction providing β anomers. *p*-Nitrobenzoic acid liberated during the condensation and also during thermal decomposition of **13** starts to protonate the 3-(*p*-nitrobenzoyl) group to form a cation, **15**, which is not stabilized by anchimeric

assistance of the carbonyl group of the 4-*p*-nitrobenzoate due to the electron-withdrawing effect of the *p*-nitro group. (The substrate **13** alone decomposes substantially in boiling DMF. At least six more polar products can be seen on TLC. Unchanged **13** can be isolated in ca. 20% of original amount after 45 min of heating). Therefore incoming nucleophiles attack only the anomeric carbon atom from both possible sides providing α,β mixtures **14A**, which are products of a kinetic control as stated in ref 26. No conversion of the $\alpha(\beta)$ to $\beta(\alpha)$ nor to 3'substituted products takes place under the reaction conditions as evidenced by the following experiment. Incubation of either α -**17** or β -**16** with 2 mol equiv of Purine and Pyrimidine β -D-glycero-Pent-2'-enopyranosyls

 Table 2.
 Selected NMR Parameters of the

 4'-O-Deprotected Pentopyranosyl Nucleosides^a

	HO B G apomers			β anomers				
base	compd no.	δ C-5′	$J_{4'5'}$	$J_{4'5''}$	compd no.	δ C-5′	$J_{4^{\prime}5^{\prime}}$	$J_{4'5''}$
C ^{Bz} C U T	30 32 42 44	67.05 67.04 67.36 67.72	4.1 3.9 3.9 3.7	4.9 4.5 4.4 4.0	29 31 41 43		4.4 4.6 4.7 4.8	6.1 6.6 6.6^{68} 6.9^{68}
G ^{NPE} _{iBu} A ^{Bz} A 6-OMe-	34 36 38 40	65.02 65.02 64.80 64.75	4.4 5.2 5.1 5.4	n.d. 7.8 8.0 7.8	33 35 37 39	67.17 67.16 66.83 66.94	3.3 3.6 3.7 3.5	3.7 2.9 3.4 3.3
purine G _{iBu}	46	64.17	5.5	7.8	45	67.50	3.7	3.3

 a δ in ppm, $J_{4'5'}, J_{4'5''}$ in Hz for DMSO- d_6 solutions, recorded on a Varian Gemini 200 spectrometer.

p-nitrobenzoic acid in boiling DMF during a period of 6 times the effective condensation time did not produce any traces of the opposite anomer nor 3'-product 18. This has been checked only for N-benzoylcytidines because all three products were available, and these results contrast with a similar experiment using trifluoroacetic acids as catalyst.²⁸ Suppression of formation of the 3'-substituted 1',2'-unsaturated products 14C therefore can be attributed to the lack of anchimeric stabilization of the cation 15 and the fact that liberated p-nitrobenzoic acid is too weak to force either $\alpha(\beta)$ to $\beta(\alpha)$ or 14A \leftrightarrow 14C equilibration.

As seen in Table 1, anomeric ratios of the compounds 14A change from case to case. For trimethylsilylated guanine and adenine (entries 3 and 6), we were able to get some β selectivity probably due to the elevated nucleophilicity of these two bases. In most cases (entries 1, 2, 4, 7, and 10), equal proportions of anomers have been formed. When sodium salts were used (entries 8 and 9), the predominant anomer was α probably due to decomposition of the substrate 13 by the basic salts. In these circumstances more *p*-nitrobenzoic acid is produced which forces a reaction to proceed along the ionic intermediate 15. This cation evidently displays elevated facial electrophilicity from a *re* side to provide α anomers which are stabilized by the $\pi - \sigma^*$ conjugation (see below).

Separation of the 4'-O-p-nitrobenzoylated β/α anomers 14A was possible for $B = C^{Bz}$ (16 and 17), 6-chloropurine (23 and 24), and uracil (25 and 26). Small amounts of anomerically pure guanosines 20 and 21 have been obtained for analytical purpose. It was much easier to separate β/α anomers 33/34 and 35/36 after 4'-O-deesterification (catalytic NaOMe in dioxane-HOMe) by either gravitational or flash chromatography. The only troublesome mixture is 43/44 where HPLC was necessary to obtain a complete separation. 6-Chloropurine nucleosides 23 and 24 have been treated with excess of sodium methoxide in methanol to furnish 6-methoxy derivatives 39 and 40 (further converted to adenosines 37 and 38, respectively, by ammonolysis). All β -4'-O-deprotected nucleosides are chromatographically more polar than their corresponding a anomers.

Anomeric configurations have been established using chemical shifts of the carbon atoms C-5' in the 4'-Odeprotected compounds **14B**. In all α/β pairs the signals of the C-5' atoms in the α anomers are moved upfield compared to those in the β anomers, evidently as a result

Figure 1. X-ray structures of 31, 37, and 45.

of increased steric congestion in the vicinity of the C-5' nuclei (Table 2). This effect is not very pronounced (0.5-2 ppm) but is uniformly displayed by all nine anomeric pairs **14B** described here. Interestingly, the anomeric carbon atoms in **14B** do not demonstrate such changes of shielding. Coupling constants $J_{\rm H1',H2'}$ are not informative due to a narrow range of their variation. These structural assignments were confirmed by X-ray analysis of **31**, **37**, and **45** (Figure 1) and by comparison with the data for the known $(2',3'-dideoxy-\beta-D-glycero-pent-2'-enopyranosyl)thymine$ **43**^{65,66} and -uracil**41**⁶⁶

⁽⁶⁵⁾ Pérez-Pérez, M. J.; Rozenski, J.; Herdewijn, P. Bioorg. Med. Chem. Lett. 1994, 4, 1199-1202.

⁽⁶⁶⁾ Doboszewski, B.; Blaton, N.; Rozenski, J.; De Bruyn, A.; Herdewijn, P. Tetrahedron **1995**, 51, 5381-5396.

Figure 2. Conformational forms of the 2',3'-unsaturated pentopyranosyl nucleosides.

prepared by a stepwise procedure from (2',3',4'-tri-*O*acetyl- β -D-xylopyranosyl)thymine and -uracil. It should be noted that Hudson's rules of isorotation can not be used to correlate the optical rotation values with anomeric configuration for nucleosides,^{67,68} whereas generality of application of circular dichroism for the same purpose has been questioned for 2',3'-unsaturated hexopyranosyl nucleosides.²⁹

O,N-Bis-deprotected nucleosides **31**, **32**, **37**, and **38** have been prepared from their respective N-protected derivatives by either NaOMe/HOMe or NH₃/HOMe treatment. O^6 -Deprotection of guanosines **33** and **34** has been done by DBU/Py treatment⁶³ to furnish **45** and **46**.

Inspection of the coupling constants $J_{4'5'}$ and $J_{4'5''}$ in 4'-O-deprotected nucleosides (Table 2) reveals the following pattern. Purines in 33-40, and 45, and 46 are oriented pseudoaxially via the predominant conformation ${}^{0}\text{H}_{4}$ for the α anomers and ${}^{4}\text{H}_{0}$ for the β anomers (Table 2, Figure 2) notwithstanding unfavorable steric repulsions. Clearly an overriding effect must operate, which is not an anomeric effect, though. This turned out clear after catalytic reduction of the 2',3'-double bond in 35 and 36 to furnish 48 and 49, respectively (Scheme 8). Coupling constants $J_{1'2'eq} = 2.1$ Hz and $J_{1'2'ax} = 11.0$ Hz in 48 and $J_{1'2'eq} = 2.1$ Hz and $J_{1'2'ax} = 10.2$ Hz in 49 indicate conformations ${}^{4}C_{1}$ and ${}^{1}C_{4}$, respectively, with equatorially oriented N-benzoyladenine. Steric bulk of this moiety is therefore the driving force which controls conformations of the saturated compounds 48 and 49. If conformations of these two compounds were controlled by the anomeric effect of N-benzoyladenine, then this moiety would be oriented axially, which is obviously not the case. The anomeric effect of purines and pyrimidines is low. Thus, presence of the 2',3'-double bond is essential to ensure pseudoaxial orientations of purines in compounds 33-40, 45 and 46. Since the anomeric position in 2',3'- unsaturated nucleosides is also the allylic position, one can speculate that a resonance between a π electron cloud and an antibonding orbital of the C-1'-N-9 bond is responsible for the stabilizing effect which overrides steric repulsion. This resonance is possible only when purines are oriented (pseudo)axially. Such $\pi - \sigma^*$ interactions have been introduced to rationalize preferential axial orientations of electronegative substituents on allylic position in cyclic systems as already mentioned.^{9,10,52-54} When examining structures 37 and 45(Figure 1), the influence of the anomeric effect and of an O-5'-C-5'-C-4'-O-4' gauche effect can still be present and contribute to the driving force for the conformational preference. Compounds 33-40, 45, and 46 represent an interesting case where substituents bound to the anomeric carbon atom adopt pseudoaxial orientation via a mechanism different than the anomeric effect.

The resonance $\pi - \sigma^*$ has also some influence on the conformational equilibria of the 2',3'-unsaturated pentopyranosyl pyrimidines (Table 2, Figure 2). a Anomers **30**, **32**, **42**, and **44** show an equilibrium, ${}^{4}H_{0} \leftrightarrow {}^{0}H_{4}$, with marginal preference toward the ⁰H₄ conformation with pseudoaxially oriented base moieties and pseudoequatorial 4'-OH groups. Energetic gain due to this resonance is nearly completely counterbalanced by steric repulsion between the aglycons and the axial proton H-5'. Steric bulk of pyrimidines is a factor strongly influencing conformations of pentopyranosyl nucleosides. For example, nucleosides 47 adapt a conformation, ${}^{4}C_{1}$, both in a solution and in a crystalline state with equatorially oriented thymine and uracil and diaxially disposed functionalities at the carbon atoms C-3',4'.66 (2',3',4'-Tri-O-acetyl- α -D-xylopyranosyl)uracil (50) and (4'-O-benzoyl- α -D-xylopyranosyl)uracil (51) adopt exclusively a conformation, ${}^{1}C_{4}$, with equatorial uracil and three functional groups at the atoms C-2',3',4' oriented axially.66

Steric bulk of the aglycons and possibly also reversed anomeric effect due to a partial positive charge on the nitrogen atom N¹ seem to be the driving forces for these conformational features. (Interestingly, theoretical calculations performed for 2-aminotetrahydropyran and 2-tetrahydropyranylammonium ion indicate equatorial orientations of both -NH₂ and -NH₃⁺ due to steric and electrostatic effects, respectively.⁶⁹) Presence of the 2',3'double bond and consequently $\pi - \sigma^*$ conjugation in **30**, **32**, **42**, and **44** are therefore essential to explain roughly equal population of conformers ⁴H₀ and ⁰H₄. When this C-C double bond is reduced as in D-glycero-pentopyranosyluracils **52** and **53**, the uracil moiety occupies exclusively equatorial position as evidenced by the mag-

⁽⁶⁷⁾ Lemieux, R. U.; Lown, J. W. Can. J. Chem. **1963**, 41, 889-897.

⁽⁶⁸⁾ Emerson, T. R.; Ulbricht, T. L. V. Chem. Ind. 1964, 2129.

⁽⁶⁹⁾ Salzner, U.; von Ragué Schleyer, P. J. Org. Chem. **1994**, 59, 2138-2155.

nitude of the coupling constants $J_{\text{H1',2'eq}}$ and $J_{\text{H1',2'ax}}$, just like adenine in **48** and **49**.

Coupling constants $J_{4'5'ax}$ in 29, 31, 41, and 43 suggest a preferential conformation, ${}^{0}H_{4}$, with pseudoequatorial aglycons and 4'-OH groups. The percentage of this conformation could not be determined exactly due to a lack of experimental data on the magnitude of the diaxial coupling constant in a frozen conformation, ${}^{0}H_{4}$. An alternative conformation, ⁴H₀, with pseudoaxial aglycons and 4'-OH goups provides a $\pi - \sigma^*$ stabilization but also introduces unfavorable steric interactions; the latter are evidently stronger. The steric effect of pyrimidine base disfavors pseudoaxial orientation which should be preferred when the influence of stereoelectronic effects (O-5'-C-5'-C-4'-O-4' gauche effect, anomeric effect, allylic effect of 4'-OH group, $\pi - \sigma_{C-1'-N-1}^*$ interaction) dominates. Interplay of these factors ensures a predominant ⁰H₄ form. It is clear that a $\pi - \sigma^*$ conjugation also operates for pyrimidines, but it is not as efficient as for purines.

Application of the olefinic nucleosides 29, 35, 41, 43, and 45 for the synthesis of branched derivatives like 47 for antiviral/antisense studies will be published separately.

Conclusions

"No acid-added" Ferrier rearrangement of glycal 13 and purines/pyrimidines (A, C, 6-chloropurine, G, T, U) provides preparatively acceptable yield of $\alpha,\beta-2',3'$ unsaturated pentopyranosyl nucleosides. Formation of the thermodynamically most stable 3'-substituted 1',2'unsaturated nucleosides has been practically avoided. Anomeric configurations in 4'-O-deprotected 2',3'-unsaturated nucleosides 29-46 can be determined using only ¹³C NMR. In all anomeric pairs studied here, chemical shifts of the carbon atoms C-5' in the α anomers are smaller than in the corresponding β anomers. Purines adopt pseudoaxial orientiation in 33-40, 45, and 46 probably due to the $\pi - \sigma_{C,1'-N,9}^*$ stabilization. This stabilization is counterbalanced by steric repulsions in α pyrimidines 30, 32, 42, and 44 which show a ${}^{4}H_{0} \leftrightarrow {}^{0}H_{4}$ equilibrium with marginal preference toward the ⁰H₄ form. In β pyrimidines 29, 31, 41, and 43, steric interactions dominate a conformational equilibrium with marked preference toward the ⁰H₄ form.

Experimental Section

General. Glassware was dried at 130 °C and cooled under dry nitrogen. Reactions involving water-sensitive reagents were performed under dry nitrogen. After evaporations, vacuum was broken with dry nitrogen using a balloon. NMR spectra and mass exact measurements were performed as described in ref 66. NMR spectra are reported in δ units. X-ray diffractions intensities were measured on a Stoe STADI4 diffractometer using graphite-monochromated Mo K α radiation. The atomic coordinates and other data for **31**, **37**, and **45** were deposited in the Cambridge Crystallographic Data Centre (see ref 1).

3,4-Bis-O-(p-nitrobenzoyl)-D-xylal (13). 3,4-Di-O-acetyl-D-xylal^{58,59} (55 g, 0.275 mmol) in 900 mL of dry methanol was deacetylated with catalytic NaOMe overnight and treated with several pieces of solid CO₂. After evaporation and drying, pyridine (900 mL) was added followed by *p*-nitrobenzoyl chloride (122 g, 1.2 mol equiv) at 0 °C. After overnight reaction, a few milliliters of water was added to destroy excess acyl chloride, and extraction was performed (CH₂Cl₂-H₂O). The organic layer was successively washed with water, dilute HCl, aqueous saturated NaHCO₃, and finally water. After drying (MgSO₄) and evaporation, the residue was coevaporated with *p*-xylene to remove any remaining pyridine. The product crystallized from EtOAc after addition of hexane to turbidity: yield 86.5 g, 76%, for two steps; mp 123-124 °C (crystallized EtOAc-hexane); ¹H NMR (benzene-d₆) 7.88-7.74 (8H), 6.23 (1H, d, $J_{12} = 6.2$ Hz), 5.47-5.41 (1H), 5.29-5.22 (1H), 5.16 (1H, ddd, $J_{21} = 6.4$ Hz, $J_{23} = 5.0$ Hz, $J_{24} = 1.6$ Hz), 4.20 (1H, ddd, $J_{5ax3} = 1.8$ Hz, $J_{5ax4} = 3.1$ Hz, $J_{5ax5eq} = 12.5$ Hz, H5ax), 3.87 (1H, dd, $J_{5eq4} = 1.5$ Hz, $J_{5eq5ax} = 12.3$ Hz, H5 equiv); ¹³C NMR (DMSO-d₆) 163.48, 150.64, 134.99, 134.72, 131.07, 131.11, 124.03 (C aromatic), 149.24, 96.78, 67.98, 64.36, 63.60; MS (CI, isobutane) calcd for C₁₉H₁₄N₂O₉ + H 415.0777, found 415.0672.

[4'-O-(p-Nitrobenzoyl)-2',3'-dideoxy-β-D-glycero-pent-2'enopyranosyl]-N⁴-benzoylcytosine (16), α Anomer 17, and 3'-Substituted Product 18. A mixture of N⁴-benzoyl $cytosine^{62}\,(6.3~g,\,29.3~mmol)$ in 70 mL of hexamethyldisilazane (HMDS) and a catalytic amount of (NH₄)₂SO₄ were boiled overnight. The solution was cooled to room temperature. DMF (200 mL) was added, and all volatiles were evaporated. To the resulting solid residue was added DMF (200 mL), and the flask was warmed up in a silicon oil bath (\sim 190 °C). When the heterogenous solution reached boiling point, glycal 13 (12 g, 29 mmol) was added in one portion. After 15 min heating was discontinued. TLC (EtOAc-toluene, 4:1) showed a spot having $R_f 0.55$ of the 3'-substituted product 18, $R_f 0.42$ of the β anomer 16, and R_f 0.23 of the α anomer 17. When the solution reached room temperature, some unidentified material crystallized (1.1 g) and was removed by filtration. DMF was evaporated. To the semisolid residue was added chloroform (~300 mL) resulting in a spontaneous crystallization of the β isomer 16, which was filtered out. The crystals were washed with chloroform and dried. An amount of pure 26 (4.92 g) was obtained at this stage. The chloroform solution was washed with aqueous saturated NaHCO3 and water, dried, and evaporated to furnish the dark-brown syrup. Flash chromatography (gradient EtOAc-toluene, 3:1, EtOActoluene, 4.1, neat EtOAc) furnished 0.463 g (3.4%) of 18, 0.30 g of 16 (total 5.22 g), and 4.62 g of 17. Total yield of β/α products was 73%. No interconversion of $\beta(\alpha)$ into $\alpha(\beta)$ nor 18 was detected by TLC when 16 or 17 was incubated with 2 mol equiv of p-nitrobenzoic acid in DMF at bp during 90 min.

16: mp dec ca. 250 °C (crystallized dioxane-MeOH); ¹H NMR (DMSO- d_6) 11.40 (1H, s), 8.42–7.50 (11H), 6.60 (¹/₂H, dd, J = 1.4, 4.3 Hz), 6.58–6.49 (1.5H), 6.27 (1H, dd, $J_{1'2'} = 2.9$ Hz, $J_{2'3'} = 10.3$ Hz), 5.51 (1H, q, $J_{4'5'} = J_{4'5'} = J_{4'3'} = 3.7$ Hz), 4.15 (1H, dd, $J_{5'4'} = 3.3$ Hz, $J_{5'5''} = 13.6$ Hz), 4.04 (1H, dd, $J_{5'4'} = 2.9$ Hz, $J_{5'5'} = 13.6$ Hz); ¹³C NMR (DMSO- d_6) 164.10, 163.81 (C carbonyl), 154.77, 150.63, 147.25, 135.10, 133.36, 133.09, 131.10, 129.19, 128.98, 128.74, 124.23, 96.29, 77.47, 66.61, 63.04 (C-5'); UV (MeOH) λ_{max} 262.4 nm ($\epsilon = 44$ 202); MS (thioglycerol) calcd for C₂₃H₁₈N₄O₇ + H 463.1254, found 463.1238.

17: mp 171–172 °C (crystallized dioxane–MeOH); ¹H NMR (DMSO- d_6) 11.38 (1H, s, NH), 8.44–8.25, 8.10–7.97, 7.72–7.39 (11H), 6.59–6.44 (2H), 6.25 (1H, dd, $J_{2'3'} = 11.3$ Hz), 5.42 (1H, bs, half-width = 10.9 Hz), 4.20 (2H, AB, $J_{5'4'} = 2.7$ Hz, $J_{5''4'} = 1.9$ Hz, $J_{5'5''} = 13.2$ Hz); ¹³C NMR (DMSO- d_6) 167.65, 164.20, 163.84, 154.62, 150.60, 146.19, 135.17, 133.30, 133.07, 131.63, 131.17, 128.70, 128.20, 124.15, 97.48, 78.83, 65.89 (C-5'), 65.05; UV (MeOH) λ_{max} 260.7 nm ($\epsilon = 42$ 319); MS (thioglycerol) calcd for C₂₃H₁₈N₄O₇ + H 463.1254, found 463.1249.

18: mp 105–120 °C (crystallizeddioxane–MeOH); ¹H NMR (DMSO- d_6) 11.27 (1H, s), 8.44–7.99 and 7.69–7.14 (11H), 7.05 (1H, dd, $J_{12'} = 6.2$ Hz, $J_{13'} = 1.5$ Hz), 5.43 (1H, bs, half-width = 9.5 Hz), 5.22 (1H, t, $J_{34'} = J_{3'2'} = 4.7$ Hz), 4.94 (1H, ddd, $J_{2'1'} = 6.0$ Hz, $J_{2'3'} = 4.6$ Hz, $J_{2'4'} = 1.1$ Hz), 4.26 (1H, ddd, $J_{5'4'} = 4.5$ Hz, $J_{5'5''} = 11.9$ Hz, $J_{5'5'} = 0.8$ Hz), 4.06 (1H, dd, $J_{5'4'} = 1.7$ Hz, $J_{5'5''} = 12.4$ Hz); ¹³C NMR (DMSO- d_6) 167.53, 163.40, 163.21, 155.31, 147.65, 150.74, 149.70, 134.72, 133.39, 132.99, 131.10, 129.16, 128.70, 96.86, 96.00, 69.11, 63.08 (C-5'), 51.86; UV (MeOH) λ_{max} 261.2 nm ($\epsilon = 36$ 801), 301.6 ($\epsilon = 14$ 100); MS (thioglycerol) calcd for C₂₃H₁₈N₄O₇ + H 463.1254, found 463.1241.

When N-acetylcytosine was used instead of N-benzoylcytosine, unseparable mixture of α,β anomers 19 was isolated in 52% yield (β : α = 1:1) after 5 h of reaction time at 110 °C. **19**: ¹H NMR data not presented due to complexity of the 200 MHz spectrum; ¹³C NMR (DMSO-*d*₆) 171.33, 164.17, 164.06, 163.02, 154.94, 154.69, 150.57, 147.23, 146.16, 135.13, 131.64, 131.13, 131.04, 129.10, 128.99, 128.07, 124.01, 96.64, 95.47, 78.77, 77.42, 65.86, 65.01, 64.74, 63.01, 24.61.

[4'-O-(p-Nitrobenzoyl)-2',3'-dideoxy-β-D-glycero-pento-2'-enopyranosyl]-N²-isobutyryl-O⁶-[2-(p-nitrophenyl)ethyl]guanine (20) and α Anomer 21. Coupling of trimethylsilylated N²-isobutyryl-O⁶-[2-(p-nitrophenyl)ethyl]guanine⁶³ (12 g, 32.4 mmol) and 13 (12.8 g, 31 mmol) in 250 mL of DMF at bp, during 40 min, was performed as above. After evaporation of the solvent and coevaporation with p-xylene, extraction was performed (CHCl₃-aqueous saturated NaHCO₃). Unreacted guanine was crystallized in a chloroform phase and filtered out (3.7 g). Organic phase was dried (MgSO₄) and evaporated. TLC (CH₂Cl₂-MeOH, 20:0.7) showed two principal products, R_f 0.78 (α anomer 21) and 0.70 (β anomer 20), in approximate proportions 1:2, accompanied by two minor products, R_f 0.56 and 0.31.

Chromatography (CH₂Cl₂-MeOH, 20:0.3) furnished 10.49 g of a mixture of **20** and **21** (76% counting on a guanine which had effectively reacted or 52% on a total guanine taken for condensation), 0.60 g of the product R_f 0.56, and 0.62 g of the product R_f 0.31. Separation of the anomers **20** and **21** was difficult, and only small amounts of pure compounds were obtained for analytical purpose. The two more polar minor product were not further studied, since they decomposed during 6-O-deprotection (DBU/Py). Coupling of the glycal **13** (1.5 g, 3.6 mmol) with N²-isobutyryl-O⁶-[2-(*p*-nitrophenyl)ethyl]-guanine (1.34 g, 3.6 mmol) in boiling DMF during 45 min yielded 60% of **20/21** mixture in approximate ratio 1:1.

20: amorphous; ¹H NMR (DMSO- d_6) 10.45 (1H, s), 8.41– 9.16 and 7.70–7.65 (9H), 6.61–6.40 (3H), 5.49 (1H, d, $J_{4'5'} =$ 4.1 Hz), 4.82 (2H, t, $J_{CH_2-CH_2} =$ 6.6 Hz), 4.22 (1H, dd, $J_{5'4'} =$ 3.4 Hz, $J_{5'5''} =$ 14.0 Hz), 4.07 (1H, d, $J_{5'5'} =$ 13.4 Hz), 3.40–3.29 (CH₂PhNO₂, superimposed on the residual H₂O signal), 2.93 (1H, quint, $J_{CH-CH_3} =$ 7.0 Hz), 1.12 (6H, d, $J_{CH_3-CH} =$ 6.7 Hz); ¹³C NMR (DMSO- d_6) 175.43, 164.13, 160.13, 153.08, 152.60, 146.80, 146.55, 141.93, 135.19, 131.07, 130.63, 128.62, 127.55, 124.21, 123.67, 117.60, 74.39, 66.74, 64.66, 63.01 (C-5'), 34.61, 34.49, 19.59; UV (MeOH) λ_{max} 264.8 nm ($\epsilon =$ 37 403); MS (thioglycerol) calcd for C₂₉H₂₇N₇O₉ + H 618.1948, found 618.1926.

21: amorphous; ¹H NMR (DMSO- d_6) 10.49 (1H, s), 8.40– 8.17 and 7.70–7.66 (9H), 6.55–6.38 (3H), 5.57–5.46 (1H, m), 4.82 (2H, t, $J_{CH_2-CH_2} = 6.9$ Hz), 4.22 (1H, dd, $J_{5'4'} = 4.2$ Hz, $J_{5'5''} = 12.7$ Hz), 4.06 (1H, dd, $J_{5''4'} = 4.8$ Hz, $J_{5''5'} = 12.4$ Hz), 3.35 (t, J = 6.1 Hz, overlapped on the residual H₂O peak), 2.91 (1H, sept, $J_{CH-CH_3} = 6.9$ Hz), 1.10 (6H, d, $J_{CH_3-CH} = 6.6$ Hz); ¹³C NMR (DMSO- d_6) 175.38, 164.17, 160.12, 153.08, 152.71, 150.62, 146.78, 146.54, 141.20, 135.14, 131.18, 130.65, 129.31, 129.01, 124.12, 123.67, 117.28, 75.87, 66.79, 65.23, 64.03 (C-5'), 34.62, 34.48, 19.56; UV (MeOH) λ_{max} 264.9 nm (ϵ = 35 918); MS (thioglycerol) calcd for C₂₉H₂₇N₇O₉ + H 618.1948, found 618.1950.

[4'-O-(p-Nitrobenzoyl)-2',3'-dideoxy- α_{s} -D-glycero-pent-2'-enopyranosyl]-N⁶-benzoyladenine 22. A. Using N-Benzoyladenine. To a boiling solution of N⁶-benzoyladenine^{60,61} (1.0 g, 4.2 mmol) in dry DMF (30 mL) was added glycal 13 (1.73 g, 4.2 mmol). After 10 min heating was discontinued. The solvent was evaporated. Extractive workup (CH₂Cl₂aqueous saturated NaHCO₃) and evaporation of CH₂Cl₂ furnished a brown syrup. TLC (CH₂Cl₂-MeOH, 20:0.4) showed a spot corresponding to a mixture of 22 (R_f 0.34) and minor more and less polar impurities. Chromatography furnished 1.27 g (60%) of unseparated 22 (in proportion $\alpha/\beta = 2/2.5$; see 4'-O'-deprotection step): MS (EI) calcd for C₂₄H₁₈N₆O₆ 486.1288, found 486.1299.

B. Using Trimethylsilylated N-Benzoyladenine. Glycal 13 (13.0 g, 31.4 mmol) was reacted with A^{Bz} (7.7 g, 32.2 mmol) (trimethylsilylated and worked up as in the case of C^{Bz}) in DMF (150 mL) at bp during exactly 10 min. TLC showed a UV-absorbing, noncharring spot, R_f 0.46 (solvent system as above), a product **22** spot (R_f 0.34), and three more polar charring compounds (not identified). Extractive workup and

chromatography furnished 6.79 g (44%) of **22** (in ratio $\beta/\alpha = 27/17$ after 4'-O-deprotection, see below).

In separate experiments, the yield of 22 was 28-51%. Prolongation of reaction time resulted in more complex reaction mixtures. N-Benzoyladenine prepared as in ref 61 was inferior probably due to the presence of benzoic acid.

[4'-O-(p-Nitrobenzoyl)-2',3'-dideoxy-β-D-glycero-pent-2'enopyranosyl]-6-chloropurine (23) and α Anomer 24. A. Using Sodium Salt of 6-Chloropurine. 6-Chloropurine (1.6 g, 10.35 mmol) in dry DMF (45 mL) and sodium hydride (60% in mineral oil, 0.45 g, 11.4 mmol) were stirred at room temperature. After 2 h, the flask was immersed in an oil bath ($t = \sim 150$ °C), and glycal 13 (5.14 g, 12.4 mmol) was added. The mixture turned dark immediately. After 35 min heating was discontinued. TLC (CH₂Cl₂-MeOH, 20:0.2) showed two spots corresponding to 23/24 (R_f 0.31). After evaporation of the solvent and extractive workup (CH₂Cl₂-aqueous saturated NaHCO₃), 5.2 g of the brown glassy material was obtained. Flash chromatography furnished 1.065 g of the less polar α anomer 24, 0.438 g of 23, and 0.260 g of mixed fractions in roughly equal proportion. Total yield of 23/24: 1.76 g, 42%, counting on 6-chloropurine.

B. Using 6-Chloropurine. 6-Chloropurine (0.37 g, 2.4 mmol) in DMF (20 mL) was brought to bp, whereupon glycal 13, 1.0 g (2.4 mmol), was added. After 12 min heating was discontinued. Workup as above and chromatography furnished a total of 0.55 g, 57%, of 23/24 formed in equal proportion.

23: amorphous; ¹H NMR (DMSO- d_6) 8.84, 8.76 (2s), 8.39– 8.19 (4H), 6.71 (1H, dd, $J_{1'3'} = 1.8$ Hz, $J_{1'2'} = 3.1$ Hz), 6.61 (1H, dd, $J_{3'1'} = 1.7$ Hz, $J_{3'4'} = 4.9$ Hz, $J_{3'2'} = 10.2$ Hz), 6.48 (1H, dd, $J_{2'1'} = 3.1$ Hz, $J_{2'3'} = 9.9$ Hz), 5.48 (1H, dt, $J_{4'5'} = J_{4'5''} = 2.4$ Hz), ¹³C NMR (DMSO- d_6) 163.97, 152.12, 151.84, 150.47, 149.54, 146.43, 134.96, 131.35, 130.91, 128.04, 127.86, 124.05, 74.90, 64.35, 62.86 (C-5'); UV (MeOH) λ_{max} 264.6 nm; MS (thioglycerol) calcd for C₁₇H₁₂ClN₅O₅ + H 402.0605, found 402.0609.

24: amorphous; ¹H NMR (DMSO- d_6) 8.85, 8.80 (1H, 2s), 8.39–8.23 (4H), 6.63 (1H, q, $J_{1'2'} = J_{1'3'} = J_{1'4'} = 2.0$ Hz), 6.54 (1H, ddd, $J_{3'1'} = 1.6$ Hz, $J_{3'4'} = 3.6$ Hz, $J_{3'2'} = 10.3$ Hz), 6.42 (1H, ddd, $J_{2'4'} = 1.2$ Hz, $J_{2'1'} = 2.2$ Hz, $J_{2'3'} = 10.1$ Hz), 5.52 (1H, bs, half-width = 10 Hz), 4.26 (1H, dd, $J_{5'4'} = 3.9$ Hz, $J_{5'5''} = 12.3$ Hz), 4.05 (1H, dd, $J_{5'4'} = 4.1$ Hz, $J_{5''5'} = 12.2$ Hz); ¹³C NMR (DMSO- d_6) 164.01, 152.17, 151.79, 150.50, 149.57, 146.06, 134.99, 131.19, 129.03, 128.74, 131.00, 123.99, 76.59, 65.03, 64.05 (C-5'); UV (MeOH) λ_{max} 263.6 nm; MS (thioglycerol) calcd for C₁₇H₁₂ClN₅O₅ + H 402.0605, found 402.0582.

[4'-O-(p-Nitrobenzoyl)-2',3'-dideoxy-β-D-glycero-pent-2'enopyranosyl]uracil (25), α Anomer 26, and N^1, N^3 -Bisglycosylated Products 27A,B. Uracil (1.12 g, 10 mmol) in dry DMF (40 mL) was treated with sodium hydride (60% suspension in mineral oil, 0.4 g, 10 mmol) at room temperature, and after 30 min the flask was immersed in a silicon oil bath (t = 170 °C). After 15 min glycal **13** (3.1 g, 15 mmol) was added. Reaction time was 1 h. TLC showed four spots: in CH_2Cl_2 -MeOH (20:0.15) R_f 0.52 and 0.33 corresponding to two compounds (27A,B) and in CH_2Cl_2 -MeOH (20:0.5) $R_f 0.40$ corresponding to a midpoint of two compounds (25 and 26). The solvent was evaporated. Extractive workup gave a brown syrup. Chromatography using a gradient of CH₂Cl₂-MeOH $(20:0.1 \rightarrow 20:0.5)$ gave 0.53 g of 26 (less polar) and 0.311 g of 25 (total yield 23%). Both products 27A,B were repurified using CH_2Cl_2 -MeOH (20:0.1) to give 0.36 g of 27A (less polar) and 0.17 g of 27B. When sodium salt of N^3 -benzoyluracil⁶⁴ was used instead of uracil, more complex reaction mixture resulted despite suppression of formation of 27A,B. This was not further examined.

25: mp 252–258 °C, dec (crystallized dioxane); ¹H NMR (DMSO- d_{6}) 11.43 (1H, s), 8.37 (2H, d, J = 8.5 Hz), 8.19 (2H, d, J = 8.5 Hz), 7.59 (1H, d, $J_{65} = 8.0$ Hz), 6.49 (1H, ddd, $J_{3'1'} = 1.5$ Hz, $J_{3'4'} = 3.7$ Hz, $J_{3'2'} = 10.3$ Hz), 6.30 (1H, t, $J_{1'2'} = J_{1'3'} = 2.4$ Hz), 6.15 (1H, dd, $J_{2'1'} = 2.8$ Hz, $J_{2'3'} = 10.1$ Hz), 5.59 (1H, d, $J_{56} = 7.9$ Hz), 5.47 (1H, q, $J_{4'3'} = J_{4'5''} = J_{4'5''} = 3.6$ Hz), 4.10 (1H, dd, $J_{5'4'} = 3.4$ Hz, $J_{5'5''} = 12.9$ Hz), 3.99 (1H, dd, $J_{5'4'} = 3.6$ Hz), 150.77, 150.47, 142.18, 134.93, 130.91, 129.41, 128.63, 124.04,

J. Org. Chem., Vol. 60, No. 24, 1995 7917

101.40, 76.13, 64.62, 63.21 (C-5'); MS (3-nitrobenzyl alcohol, negative mode) calcd for $C_{16}H_{13}N_3O_7$ 359.0753, found 359.0748.

26: amorphous; ¹H NMR (DMSO- d_6) 11.44 (1H, s), 8.36 (2H, dd, J = 2.0, 8.9 Hz), 8.22 (2H, dd, J = 2.2, 9.0 Hz), 7.44 (1H, d, $J_{65} = 8.0$ Hz), 6.45 (1H, ddd, $J_{3'1'} = 1.3$ Hz, $J_{3'4'} = 4.7$ Hz, $J_{3'2'} = 10.1$ Hz), 6.30 (1H, q, $J_{1'2'} = J_{1'3'} = J_{1'4'} = 1.7$ Hz), 6.17 (1H, dd, $J_{2'1'} = 1.2$ Hz, $J_{2'3'} = 10.1$ Hz), 5.69 (1H, d, $J_{56} = 8.1$ Hz), 5.34 (1H), 4.18 (1H, dd, $J_{5'4'} = 2.6$ Hz, $J_{5'5''} = 12.9$ Hz), 4.09 (1H, dd, $J_{5'4'} = 1.9$ Hz, $J_{5'5'} = 12.4$ Hz); ¹³C NMR (DMSO- d_6) 164.03, 163.21, 150.55, 150.48, 141.04, 135.03, 131.51, 130.94, 128.39, 124.03, 102.62, 77.37, 65.74 (C-5'), 64.85; MS (thioglycerol) calcd for C₁₆H₁₃N₃O₇ + H 360.0832, found 360.0831.

27A: amorphous; (¹H NMR data not present due to complexity of the 200 MHz spectrum) ¹H NMR data not presented due to complexity of the 200 MHz spectrum; ¹³C NMR (DMSO- d_6) 164.19, 162.30, 150.75, 150.64, 140.72, 135.25, 131.52, 131.31, 131.08, 129.77, 124.22, 123.35, 102.16, 78.55, 74.15, 66.02, 65.85, 65.56, 64.97; MS (thioglycerol) calcd for C₂₈H₂₂N₄O₁₂ 606.1234, found 606.1214.

27B: amorphous; (¹H NMR data not present due to complexity of the 200 MHz spectrum) ¹³C NMR (DMSO- d_6) 164.04, 163.91, 162.22, 150.82, 150.42, 141.58, 135.10, 134.91, 131.38, 130.88, 129.59, 128.36, 124.02, 123.14, 100.80, 77.14, 73.97, 65.89, 65.37, 64.56, 63.22; MS (thioglycerol) calcd for C₂₈H₂₂N₄O₁₂ 606.1234, found 606.1259.

[4'-O-(p-Nitrobenzoyl)-2',3'-dideoxy-a, β -D-glycero-pent-2'-enopyranosyl]thymine 28. Thymine (1.0 g, 7.9 mmol) was trimethylsilyated and worked up as described for Nbenzoylcytosine. DMF (40 mL) solution of this compound was warmed up in an oil bath at ca. 112 °C. Glycal 13 (3.94 g, 9.5 mmol) was added, and heating was continued during 7 h. TLC (CH₂Cl₂-MeOH, 20:0.3) showed a product (28, R_f 0.22) and a solvent front migrating compound. After evaporation of the solvent, extractive workup (CHCl₃-aqueous saturated NaH-CO₃) and chromatography gave 28 (1.42 g, 48%) as a 1:1 mixture of both anomers by ¹H and ¹³C NMR. When N³benzoylthymine⁶⁴ was used instead of thymine, more complex reaction mixture resulted, which was not further investigated.

28: (¹H NMR data not present due to complexity of the 200 MHz spectrum) ^{13}C NMR (DMSO- d_6) 164.17, 164.10, 164.04, 162.57, 150.95, 150.74, 150.60, 137.67, 136.42, 135.20, 135.09, 131.90, 131.08, 129.57, 128.95, 128.40, 124.17, 110.34, 109.34, 77.44, 76.14, 66.04, 65.05, 64.91, 63.49, 12.35, 12.18; MS (thioglycerol) calcd for $C_{17}H_{15}N_3O_7$ + H 374.1077, found 374.0996.

(2',3'-Dideoxy-β-D-glycero-pent-2'-enopyranosyl)-N-benzoylcytosine (29) and a Anomer 30. Compound 16 (4.99 g, 10.8 mmol) was dissolved in dry dioxane (300 mL) with warming. The homogenous solution was brought to room temperature, and dry methanol (400 mL) was added followed by solution of sodium methoxide in methanol (6.5 mL) (prepared from 0.088 g of sodium and 50 mL of methanol). The amount of catalyst was 0.5 mmol. After 5 h the reaction was quenched with a few pieces of solid CO₂. TLC showed a small amount of unreacted substrate still present as well as the O,Nbis-deprotected compound 31. After evaporation of the solvent and chromatography in CH₂Cl₂-MeOH (20:1), 2.34 g (69%) of 29 was obtained. Similarly, 4.24 g of 17 furnished 2.73 g (86%) of 30. Even though the β -4'-nitrobenzoate 16 is less polar on TLC than the α anomer 17, 4'-O-deprotected β anomer 29 is more polar than **30**.

29: mp >250 °C (crystallized MeOH-CH₂Cl₂); ¹H NMR (DMSO- d_6) 11.27 (1H, bs), 8.00-7.27 (7H), 6.34 (1H, q, $J_{1'2'} = J_{1'3'} = J_{1'4'} = 1.8$ Hz), 6.27 (1H, dt, $J_{3'2'} = 10.0$ Hz, $J_{3'4'} = 2.9$ Hz, $J_{3'1'} = 2.2$ Hz), 5.80 (1H, dt, $J_{2'1'} = 2.0$ Hz, $J_{2'4'} = 1.8$ Hz), 5.28 (1H, d, $J_{0H'4'} = 5.9$ Hz), 4.12 (1H, bs half-width = 13 Hz), 3.90 (1H, dd, $J_{5'4'} = 4.4$ Hz, $J_{5'5''} = 11.4$ Hz), 3.53 (1H, dd, $J_{5'4'} = 6.1$ Hz, $J_{5'5'} = 11.5$ Hz); ¹³C NMR (DMSO- d_6) 167.61, 163.42, 154.53 (C-4), 146.52, 135.89, 133.21, 132.88, 128.55, 124.64, 96.54, 78.20, 67.84 (C-5'), 60.22; UV (MeOH) λ_{max} 261.6 nm ($\epsilon = 17$ 259), 304.4 ($\epsilon = 6700$); MS (thioglycerol) calcd for C₁₆H₁₅N₃O₄ + H 314.1141, found 314.1153.

30: mp >250 °C (crystallized CH₂Cl₂-MeOH); ¹H NMR (DMSO- d_6) 11.33 (1H, bs), 8.14 (1H, d, $J_{56} = 7.6$ Hz), 8.09-8.00 and 7.70-7.48 (5H), 7.37 (1H, d, $J_{56} = 6.6$ Hz), 6.25-

6.30 (2H), 5.87 (1H, dt, $J_{2'1'} = 2.1$ Hz, $J_{2'4'} = 1.4$ Hz, $J_{2'3'} = 11.0$ Hz), 5.29 (1H, d, $J_{0H-4'} = 7.2$ Hz), 4.06 (1H, bs, half-width = 14.9 Hz), 3.88 (1H, dd, $J_{5'5''} = 11.7$ Hz, $J_{5'4'} = 4.1$ Hz), 3.60 (1H, dd, $J_{5'5'} = 11.6$ Hz, $J_{5'4'} = 4.9$ Hz); ¹³C NMR (DMSO- d_6) 167.56, 163.69, 154.79, 146.67, 135.33, 133.33, 133.04, 128.72, 125.63, 96.48, 78.25, 66.94 (C-5'), 60.62; UV (MeOH) λ_{max} 262.0 nm ($\epsilon = 15$ 143), 304.7 ($\epsilon = 5970$); MS (thioglycerol) calcd for C₁₆H₁₅N₃O₄ + H 314.1141, found 314.1153.

(2',3'-Dideoxy- β -D-glycero-pent-2'-enopyranosyl)cytosine (31) and α Anomer 32. Compounds 31 and 32 were prepared from 16 and 17, respectively, by overnight treatment with methanolic ammonia, evaporation, and chromatography in CH₂Cl₂-MeOH (4:1).

31: mp dec >200 °C (crystallized MeOH); ¹H NMR (DMSOd₆) 7.36 (1H, d, $J_{56} = 7.3$ Hz), 7.26 (2H, bs, half-width = 10.8 Hz), 6.25 (1H, q, $J_{1'2'} = J_{1'3'} = J_{1'4'} = 1.9$ Hz), 6.18 (1H, dt, $J_{3'4'} = 2.5$ Hz, $J_{3'1'} = 2.0$ Hz, $J_{3'2'} = 10.3$ Hz), 5.71 (1H, d, $J_{56} = 7.3$ Hz); 5.64 (t, $J_{2'1'} = J_{2'4'} = 1.8$ Hz), 5.24 (1H, d, $J_{0H-4'} = 5.9$ Hz), 4.10 (1H, bs, half-width = 10.0 Hz), 3.87 (1H, dd, $J_{5'4'} = 4.6$ Hz, $J_{5'5'} = 11.4$ Hz), 3.44 (1H, dd, $J_{5'4'} = 6.6$ Hz, $J_{5'5'} = 11.4$ Hz); ¹³C NMR (DMSO-d₆) 165.85, 155.18, 142.16, 135.74, 125.62, 94.38, 77.51, 68.07 (C-5'), 60.48; UV (MeOH) λ_{max} 241.6 nm ($\epsilon = 7899$), 269.6 ($\epsilon = 7879$); MS (thioglycerol) calcd for C₉H₁₂N₃O₃ 210.0879, found 210.0878.

32: mp 193–194 °C (crystallized MeOH); ¹H NMR (DMSOd₆) 7.67 (1H, d, $J_{65} = 7.4$ Hz), 7.21 (2H, bs, half-width = 18 Hz), 6.26–6.14 (2H), 5.71 (d, $J_{56} = 7.3$ Hz), 5.68 (upfield part of H2' signal, t, $J_{2'1'} = J_{2'4'} = 1.3$ Hz), 5.17 (1H, $J_{0H-4'} = 6.8$ Hz), 3.94 (1H, bs, half-width = 15 Hz), 3.77 (1H, dd, $J_{5'5''} =$ 11.7 Hz, $J_{5'4'} = 3.9$ Hz), 3.53 (1H, dd, $J_{5'5''} = 11.5$ Hz, $J_{5''4'} =$ 4.5 Hz), ¹³C NMR (DMSO-d₆) 165.87, 155.16, 142.31, 134.31, 126.75, 94.02, 77.26, 67.04 (C-5'), 60.45; UV (MeOH) λ_{max} 269.2 nm ($\epsilon = 7844$), 241.0 ($\epsilon = 7800$); MS (thioglycerol) calcd for C₉H₁₂N₃O₃ 210.0879, found 210.0872.

(2',3'-Dideoxy- β -D-glycero-pent-2'-enopyranosyl)- N^2 isobutyryl-O⁶-[2-(p-nitrophenyl)ethyl]guanine (33) and α Anomer 34. A mixture of 20/21 (10.49 g) was 4'-Odeprotected as for 29 or 30 using dioxane (200 mL), methanol (300 mL), and catalytic NaOMe. Since N^2 -isobutyrate is less prone to be removed under Zemplen conditions than Nbenzoate, the amount of sodium methoxide is not a critical factor. Chromatography (CH₂Cl₂-MeOH, 20:1) gave 2.58 g of the less polar α anomer 34 and 4.67 g of 33. Total yield of 33 + 34: 94%. Both 33 and 34 are amorphous.

33: ¹H NMR (DMSO- d_6) 10.45 (1H, s), 8.17 (1H, s), 8.17 (2H, d, J = 8.5 Hz), 7.66 (2H, d, J = 8.5 Hz), 6.38–6.32 (2H), 6.07 (1H, dd, $J_{21'} = 2.9$ Hz, $J_{23'} = 10.0$ Hz), 5.29 (1H, d, $J_{OH-4'} = 5.9$ Hz), 4.81 (2H, t, $J_{CH_2-CH_2} = 6.9$ Hz), 4.09 (1H), 3.90 (1H, dd, $J_{5'4'} = 3.3$ Hz, $J_{5'5'} = 12.1$ Hz), 3.65 (1H, dd, $J_{5'4'} = 3.7$ Hz, $J_{5'5'} = 12.1$ Hz), 3.30 (2H, t, $J_{CH_2-CH_2} = 6.6$ Hz), 2.93 (1H, quint, $J_{CH-CH_3} = 6.7$ Hz), 1.11 (6H, d, $J_{CH_3-CH} = 6.6$ Hz); ¹³C NMR (DMSO- d_6) 175.43, 163.05, 153.01, 152.57, 146.80, 146.53, 141.56, 134.05, 130.63, 124.18, 123.67, 117.47, 75.09, 67.11, 66.71 (C-5'), 59.98, 34.59, 34.47, 19.57; UV (MeOH) λ_{max} 270.9 nm ($\epsilon = 28$ 197); MS (thioglycerol) calcd for C₂₂H₂₄N₆O₆ + H 469.1835, found 469.1832.

34: ¹H NMR (DMSO-*d*₆) 10.47 (1H, s), 8.24 (1H, d, $J_{81}' = 1.1 \text{ Hz}$), 8.18 (2H, d, J = 7.8 Hz), 7.67 (2H, d, J = 8.1 Hz), 6.35–6.29 (2H), 6.04 (1H, d, half-width = 5 Hz, $J_{23'} = 9.7 \text{ Hz}$) (after H4' irradiation dt, $J_{2'3'} = 10.1 \text{ Hz}$, $J_{1'2'} = J_{2'4'} = 2.6 \text{ Hz}$), 5.23 (1H, d, $J_{OH4'} = 6.9 \text{ Hz}$), 4.82 (2H, t, $J_{CH_2-CH_2} = 6.4 \text{ Hz}$), 4.19 (1H, bs, half-width = 14 Hz), 4.83 (1H, dd, $J_{5'4'} = 4.4 \text{ Hz}$, $J_{5'5''} = 11.2 \text{ Hz}$), 3.48–3.32 (3H, superimposed on H₂O signal), 2.92 (1H, quint, $J_{CH2-H_3} = 6.3 \text{ Hz}$), 1.12 (6H, d, $J_{CH_3-CH} = 6.9 \text{ Hz}$); ¹³C NMR (DMSO-*d*₆) 175.43, 160.09, 153.09, 152.58, 146.79, 146.53, 141.46, 136.32, 130.62, 123.66, 117.48, 75.02, 66.73, 64.95 (C-5'), 61.06, 34.64, 34.47, 19.56; UV (MeOH) λ_{max} 271.0 nm ($\epsilon = 24$ 072); MS (thioglycerol) calcd for C₂₂H₂₄N₆O₆ + H 469.1835, found 469.1855.

(2',3'-Dideoxy- β -D-glycero-pent-2'-enopyranosyl)-N⁶-benzoyladenine (35) and α Anomer 36. A. 4'-O-Deprotection of 22 (1.27 g) (prepared by coupling A^{Bz} with 13) was carried out exactly as described for the cytidine analogue 19. Flash chromatography (CH₂Cl₂-MeOH, 20:2.2) furnished 0.20 g of the less polar α anomer 36 and 0.25 g of the β anomer 35 (α : β = 44:56). Total yield of 35 and 36 was 74%. Small amounts of the unreacted substrate and $O_{,N}$ -bis-deprotected products 37/38 were invariably present in deprotection reactions of 22.

B. Total yield of β/α anomers (and, to a smaller extend, their proportion) formed in a coupling between TMS(A^{Bz}) and **13** varied from experiment to experiment as already mentioned. Selective 4'-O-deprotection of **22** (6.79 g) (formed in 44% yield) gave **36** (1.66 g) and **35** (2.26 g) after gravitational column chromatography using CH₂Cl₂-MEOH (20:0.3 \rightarrow 20: 0.4) ($\alpha:\beta = 42:58$); **22** (4.39 g) formed in a separate experiment in 28% yield and gave **36** (0.93 g) and **35** (1.75 g) ($\alpha:\beta = 35:$ 65).

35: amorphous; ¹H NMR (DMSO-*d*₆) 11.27 (bs), 8.81, 8.47 (2s), 8.13–8.28 and 7.73–7.51 (5H), 6.55 (1H, bs, half-width = 6 Hz), 6.40 (1H, ddd, $J_{3'1'} = 2.0$ Hz, $J_{3'4'} = 4.2$ Hz, $J_{3'2'} = 10.3$ Hz), 6.14 (1H, ddd, $J_{2'4'} = 1.1$ Hz, $J_{2'1'} = 2.9$ Hz, $J_{2'3'} = 10.2$ Hz), 5.34 (1H, d, $J_{0H-4'} = 4.6$ Hz), 4.10 (1H, bs, half-width = 12 Hz), 3.91 (1H, dd, $J_{5'4'} = 3.6$ Hz, $J_{5'5''} = 12.2$ Hz), 3.71 (1H, dd, $J_{5''4'} = 2.9$ Hz, $J_{5''5'} = 12.0$ Hz); ¹³C NMR (DMSO-*d*₆) 165.90, 152.36, 152.08, 150.62, 143.43, 134.05, 133.61, 132.72, 128.73, 125.86, 124.20, 75.27, 67.14 (C-5'), 60.01; MS (EJ) calcd for C₁₇H₁₅N₅O₃ 337.1175, found 337.1183.

36: amorphous; ¹H NMR (DMSO- d_6) 11.29 (1H, bs), 8.81, 8.53 (1H each, s), 8.14–8.03 and 7.73–7.52 (5H), 6.53 (1H, q, $J_{12'} = J_{13'} = J_{14'} = 2.2$ Hz), 6.38 (1H, dt, $J_{3'1'} = J_{3'4'} = 1.8$ Hz, $J_{3'2'} = 10.3$ Hz), 6.10 (1H, ddd, $J_{2'4'} = 1.6$ Hz, $J_{2'1'} = 2.6$ Hz, $J_{2'3'} = 10.3$ Hz), 5.32 (1H, d, $J_{0H4'} = 7.3$ Hz), 4.23 (1H), 3.87 (1H, dd, $J_{5'4'} = 5.2$ Hz, $J_{55''} = 11.1$ Hz), 3.45 (1H, dd, $J_{5'4'} = 7.8$ Hz, $J_{5'5'} = 11.3$ Hz); ¹³C NMR (DMSO- d_6) 165.91, 152.44, 152.12, 150.73, 143.20, 136.67, 133.61, 132.74, 128.76, 125.89, 123.56, 75.20, 65.02 (C-5'), 61.14; MS (EJ) calcd for C₁₇H₁₅N₅O₃ 337.1175, found 337.1159.

(2',3'-Dideoxy- β -D-glycero-pent-2'-enopyranosyl)adenine (37) and α Anomer 38. A. O,N-Bis-deprotection of 22 in NH₃/MeOH or NaOM/MeOH gave 37 and 38; in CH₂Cl₂-MEOH (10:1) R_f of the α anomer 38 is 0.30 and R_f of the β anomer 37 is 0.24. Flash chromatography in CH₂Cl₂-MeOH (20:3) can be used to separate 37 and 38.

B. In a separate experiment, it has been established that the compound α -36 (less polar than β -35) is transformed into 38 (less polar than 37).

C. 6-Methoxypurine derivative β -39 (0.113 g) on ammonolysis in saturated NH₃/MeOH (80 mL) at 100 °C during 20 h furnished 0.060 g (56%) of 37. Similarly, the α anomer 40 funished 38, in 16% yield. The reaction was performed at 150 °C during 10 h. These conditions were evidently too harsh as evidenced by the low yield of the product and formation of other unidentified compounds.

37: mp 172–174 °C (crystallized MeOH); ¹H NMR (DMSOd₆) 8.16, 8.08 (s), 7.31 (s, 2H), 6.36–6.30 (2H), 6.27 (dd, $J_{3'1'} =$ 1.8 Hz, $J_{3'4'} =$ 4.3 Hz), 6.03 (1H, ddd, $J_{2'1'} =$ 3.0 Hz, $J_{2'4'} =$ 1.1 Hz, $J_{2'3'} =$ 9.9 Hz), 4.09–3.98 (1H), 3.84 (1H, dd, $J_{5'4'} =$ 3.7 Hz, $J_{5'5''} =$ 12.1 Hz), 3.62 (1H, dd, $J_{5'4'} =$ 3.4 Hz, $J_{5'5'} =$ 12.1 Hz); ¹³C NMR (DMSO-d₆) 156.29, 153.09, 149.52, 139.66, 133.75, 124.61, 119.16, 74.84, 67.01 (C-5'), 60.06; UV (MeOH) λ_{max} 261.2 nm ($\epsilon =$ 11 140); MS (EJ) calcd for C₁₀H₁₁N₅O₂ 233.0913, found 233.0905.

38: no sharp mp 98–110 °C (crystallized MeOH); ¹H NMR (DMSO- d_6) 8.17 (2H, s), 7.34 (2H, s), 6.34–6.29 (2H), 6.26 (t, $J_{3'4'} = 2.0$ Hz, $J_{3'1'} = 1.9$ Hz), 5.99 (1H, ddd, $J_{2'4'} = 1.6$ Hz, $J_{2'1'} = 3.0$ Hz, $J_{2'3'} = 9.9$ Hz), 5.32 (1H, bs), 4.18 (1H, bs, half-width = 16 Hz), 3.81 (1H, dd, $J_{5'4'} = 5.1$ Hz, $J_{5'5'} = 11.4$ Hz), 3.41 (1H, dd, $J_{5''4'} = 8.0$ Hz, $J_{5'5'} = 11.6$ Hz); ¹³C NMR (DMSO- d_6) 156.29, 153.08, 149.56, 139.54, 136.06, 124.03, 119.17, 74.82, 64.94 (C-5'), 61.10; UV (MeOH) λ_{max} 160.5 nm ($\epsilon = 14$ 460); MS (EJ) calcd for C₁₀H₁₁N₅O₂ 233.0913, found 233.0898.

(2',3'-Dideoxy- β -D-glycero-pent-2'-enopyranosyl)-6-methoxypurine (39) and α Anomer 40. The β anomer 23 (0.35 g) was dissolved in dry dioxane (8 mL). Methanol (30 mL) was added followed by a piece of sodium. After the substrate reacted, the reaction mixture was neutralized with solid CO₂. After evaporation of solvents and chromatographic isolation (in CH₂Cl₂-MeOH, 20:0.7), 0.17 g (78%) of **39** was obtained.

Using the same procedure, the α anomer **24** (0.84 g) furnished 0.34 g (65%) of **40**. Compound α -**40** is chromatographically less polar than the β anomer **39**.

39: amorphous; ¹H NMR (DMSO- d_6) 8.54, 8.33 (2s), 6.45 (1H, s), 6.33 (1H, ddd, $J_{3'1'} = 1.9$ Hz, $J_{3'4'} = 4.3$ Hz, $J_{3'2'} = 10.3$ Hz), 6.06 (1H, ddd, $J_{2'4'} = 1.0$ Hz, $J_{2'1'} = 2.9$ Hz, $J_{2'3'} = 10.1$ Hz), 5.28 (1H, bs), 4.10–3.99 (1H), 4.08 (3H, s), 3.84 (1H, dd, $J_{5'4'} = 3.5$ Hz, $J_{5'5'} = 12.0$ Hz), 3.64 (1H, dd, $J_{5''4'} = 3.3$ Hz, $J_{5'5''} = 12.1$ Hz); ¹³C NMR (DMSO- d_6) 160.63, 152.15, 151.98, 142.66, 134.01, 124.19, 121.17, 75.37, 67.11 (C-5'), 60.00, 54.23; UV (MeOH) λ_{max} 248.0 nm ($\epsilon = 10$ 511); MS (thioglycerol) calcd for C₁₁H₁₂N₄O₃ + H 249.0988, found 249.0984.

40: amorphous; ¹H NMR (DMSO- d_6) 8.59, 8.42 (2s), 6.45 (1H, q, $J_{1'2'} = J_{1'3'} = J_{1'4'} = 2.2$ Hz), 6.34 (1H, dt, $J_{3'4'} = J_{3'1'} = 1.9$ Hz, $J_{3'2'} = 10.2$ Hz), 6.06 (1H, ddd, $J_{2'1'} = 1.8$ Hz, $J_{2'4'} = 2.7$ Hz, $J_{2'3'} = 10.3$ Hz), 4.28–4.14 (1H, m), 4.12 (3H, s), 3.83 (1H, dd, $J_{5'4'} = 5.4$ Hz, $J_{5'5''} = 11.4$ Hz), 3.39 (1H, dd, $J_{5''4'} = 7.8$ Hz, $J_{5''5'} = 11.4$ Hz); ¹³C NMR (DMSO- d_6) 160.68, 152.18, 152.03, 142.49, 136.52, 123.56, 121.17, 75.28, 64.91 (C-5'), 61.10, 54.27; UV (MeOH) λ_{max} 248.5 nm ($\epsilon = 12$ 057); MS (thioglycerol) calcd for C₁₁H₁₂N₄O₃ + H 249.0988, found 249.0988.

(2',3'-Dideoxy- β -D-glycero-pent-2'-enopyranosyl)uracil (41) and α Anomer 42. 4'-O-Deprotected compounds 41 and 42 were prepared by NaOMe/HOMe deesterification of 25 and 26, respectively, and chromatographic isolation (CH₂-Cl₂-MeOH, 10:1). The α anomer 42 is slightly less polar on TLC than 41. Spectroscopic properties of 41 prepared as above are identical with those of the compound obtained in a stepwise procedure starting from (2',3',4'-tri-O-acetyl- β -D-xylopyranosyl)uracil.⁶⁵

42: mp 150–155 °C (crystallized MeOH); ¹H NMR (DMSOd₆) 11.35 (1H, bs), 7.60 (1H, d, $J_{65} = 8.0$ Hz), 6.25 (1H, ddd, $J_{3'1'} = 1.9$ Hz, $J_{3'4'} = 3.8$ Hz, $J_{3'2'} = 10.3$ Hz), 6.11 (1H, q, $J_{1'2'} = J_{1'3'} = J_{1'4'} = 1.9$ Hz), 5.75 (1H, ddd, $J_{2'1'} = 2.1$ Hz, $J_{2'4'} = 1.1$ Hz, $J_{2'3'} = 10.1$ Hz), 5.63 (1H, d, $J_{56} = 8.0$ Hz), 5.20 (1H, d, $J_{OH4'} = 6.1$ Hz), 3.94 (1H, bs, half-width = 12 Hz), 3.80 (1H, dd, $J_{5'4'} = 3.9$ Hz, $J_{5'5''} = 11.8$ Hz), 3.54 (1H, dd, $J_{5'4'} = 4.4$ Hz, $J_{5'5'} = 11.7$ Hz); ¹³C NMR (DMSO- d_6) 163.36, 150.71, 141.77, 135.10, 125.70, 101.56, 76.81, 67.22 (C-5'), 60.27; UV (MeOH) λ_{max} 259.6 nm ($\epsilon = 8197$); MS (glycerol) calcd for C₉H₁₀N₂O₄ + H 211.0719, found 211.0716.

(2',3'-Dideoxy- β -D-glycero-pent-2'-enopyranosyl)thymine (43) and α Anomer 44. Deprotection of 28 as described for 41 and 42 followed by flash chromatography (CH₂Cl₂-MeOH, 20:1.3) gave a small amount of the less polar α anomer 44. Complete separation was possible using HPLC.

Spectroscopic properties of the β anomer **43** are identical with those of the compound obtained in a stepwise procedure starting from (2',3',4'-tri-O-acetyl- β -D-xylopyranosyl)uracil.⁶⁵

44: mp 178–180 °C (crystallized MeOH–CH₂Cl₂) [lit.³² mp 171 °C (MeOH)]; ¹H NMR (DMSO- d_6) 11.37 (1H, s), 7.46 (1H, q, $J_{6-CH_3} = 1.1$ Hz), 6.26 (1H, ddd, $J_{3'1'} = 1.9$ Hz, $J_{3'4'} = 3.8$ Hz, $J_{3'2'} = 10.3$ Hz), 6.12 (1H, q, $J_{1'2'} = J_{1'3'} = J_{1'4'} = 2.0$ Hz), 5.76 (1H, ddd, $J_{2'1'} = 1.8$ Hz, $J_{2'4'} = 0.8$ Hz, $J_{2'2'} = 10.2$ Hz), 5.20 (1H, d, $J_{0'H'} = 6.8$ Hz), 3.92 (1H, bs, half-width = 13 Hz), 3.81 (1H, dd, $J_{5'4'} = 3.7$ Hz, $J_{5'5'} = 11.7$ Hz), 3.60 (1H, dd, $J_{5'4'} = 4.0$ Hz, $J_{5'5'} = 11.7$ Hz), 1.77 (3H, d, $J_{CH_3-6} = 1.1$ Hz); ¹³C NMR (DMSO- d_6) 163.98, 150.71, 137.19, 134.67, 126.29, 109.22, 76.79, 67.72 (C-5'), 60.29, 12.11; UV (MeOH) λ_{max} 264.4 nm ($\epsilon = 8431$); MS (thioglycerol) calcd for C₁₀H₁₂N₂O₄ + H 225.0875, found 225.0863.

(2',3'-Dideoxy- β -D-glycero-pent-2'-enopyranosyl)-Nisobutyrylguanosine (45) and α Anomer 46. 6-O-[(p-Nitrophenyl)ethyl] derivative 33 (2.81 g, 6.0 mmol) in dry pyridine (140 mL) and diazabicycloundecene (1.70 mL, 11.3 mmol) was left overnight. After evaporation and coevaporation with p-xylene, column chromatography (CH₂Cl₂-MeOH, 10: 1.8) furnished the amorphous O⁶-deprotected compound 45 (1.56 g, 81%). Using the same procedure, 34 (2.09 g) furnished 46 (1.21 g, 85%).

45: no mp up to 280 °C dec (crystallized MeOH); ¹H NMR (DMSO- d_6) 12.01, 11.77 (2H, 2bs), 7.88 (1H, s), 6.31 (1H, ddd, $J_{3'1'} = 1.5$ Hz, $J_{3'4'} = 4.0$ Hz, $J_{3'2'} = 10.3$ Hz), 6.16 (1H, bs), 6.04 (1H, dd, $J_{2'1'} = 2.6$ Hz, $J_{2'3'} = 10.3$ Hz), 5.24 (1H, d, $J_{OH4'} = 5.1$ Hz), 4.02 (1H, bs), 3.78 (1H, dd, $J_{5'4'} = 3.7$ Hz, $J_{5'5''} = 12.1$ Hz), 3.58 (1H, dd, $J_{5'4'} = 3.3$ Hz, $J_{5'5'} = 12.1$ Hz), 3.58 (1H, dd, $J_{5'4'} = 3.3$ Hz, $J_{5'5'} = 12.1$ Hz), 2.76 (1H, quint, $J_{CH:CH_3} = 6.9$ Hz), 1.10 (6H, d, $J_{CH_3:CH} = 6.7$ Hz); 1³C NMR (DMSO- d_6) 181.14, 155.76, 149.39, 149.14, 139.02, 134.81, 124.74, 121.35, 75.66, 67.50 (C-5'), 60.57, 35.62, 19.77

(CH₃); UV (MeOH) λ_{max} 260.4 nm ($\epsilon = 18$ 890), 278.0 ($\epsilon = 13$ 620); MS (thioglycerol) calcd for $C_{14}H_{17}N_6O_4 + H$ 320.1359, found 320.1361.

46: no mp up to 300 °C, dec (crystallized MeOH-CH₂Cl₂); ¹H NMR (DMSO- d_6) 12.02, 11.79 (2bs), 7.97 (1H, s), 6.29 (1H, dt, $J_{3'1'} = J_{3'4'} = 1.8$ Hz, $J_{3'2'} = 10.3$ Hz), 6.13 (1H, q, $J_{1'2'} = J_{1'3'}$ $= J_{1'4'} = 2.0$ Hz), 6.01 (1H, ddd, $J_{2'4'} = 1.7$ Hz, $J_{2'1'} = 2.7$ Hz, $J_{2'3'} = 10.3$ Hz), 5.19 (1H, d, $J_{OH-4'} = 6.9$ Hz), 4.13 (1H, bs), 3.76 (1H, dd, $J_{5'4'} = 5.5$ Hz, $J_{5'5''} = 11.4$ Hz), 3.31 (1H, dd, $J_{5'4'}$ = 7.8 Hz, $J_{5'5'} = 11.1$ Hz), 2.76 (1H, quint, $J_{CH-CH_3} = 6.8$ Hz), 1.10 (6H, d, $J_{CH_3-CH} = 6.9$ Hz); ¹³C NMR (DMSO- d_6) 181.14, 155.80, 149.51, 149.21, 139.00, 137.30, 124.13, 121.36, 75.54, 65.17 (C-5'), 61.72, 35.62, 19.76; UV (MeOH) λ_{max} 260.4 nm (ϵ = 16 244), 280.0 ($\epsilon = 12$ 000); MS (thioglycerol) calcd for C₂₂H₂₄N₆O₆ + H 469.1835, found 469.1855.

(2',3'-Dideoxy- β -D-glycero-pentopyranosyl)-N-benzoyladenine (48) and α Anomer 49. Catalytic reductions of the 2',3'-double bond in a Parr apparatus at 15 psi overnight using EtOH solutions of 35 and 36 and 10% Pd/C followed by chromatographic purification (CH₂Cl₂, 18:1) furnished 48 (62%) and 49 (36%). It is difficult to follow these reductions on TLC because R_f values of the starting olefins and the corresponding reduction products are the same.

48: amorphous; ¹H NMR (DMSO- d_6) 11.24 (bs), 8.78, 8.70 (2s), 8.08–8.04 and 7.70–7.52 (5H), 5.81 (1H, dd, $J_{1'2'eq} = 2.1$ Hz, $J_{1'2'ax} = 11.0$ Hz), 5.06 (1H, d, $J_{OH.4'} = 4.8$ Hz), 3.96 (1H, dd, $J_{5'eq3'} = 1.8$ Hz, $J_{5'eq4'} = 4.6$ Hz, $J_{5'eq5'ax} = 10.5$ Hz), 3.79–3.61 (1H, m), 3.37 (1H, t, $J_{5'ax5'eq} = J_{5'ax4'} = 10.3$ Hz), 2.62–2.36 (overlapped on DMSO- d_6 signal), 2.25–2.04, 1.76–1.52 (three groups of signals, H3'), ¹³C NMR (DMSO- d_6) 165.93, 152.18, 151.96, 150.62, 142.85, 133.63, 132.70, 128.73, 125.69 (adenine), 81.08, 72.21 (C-5'), 64.06, 31.81, 28.67; MS (thiglycerol) calcd for $C_{17}H_{17}N_5O_3 + H$ 340.1410, found 340.1415.

49: amorphous; ¹H NMR (DMSO- d_6) 11.23 (1H, s), 8.78, 8.72 (2s), 8.09–8.05 and 7.71–7.52 (5H), 5.85 (1H, dd, $J_{1'2'eq} = 2.1$ Hz, $J_{1'2'ax} = 10.2$ Hz), 4.91 (1H, d, $J_{OH.4'} = 4.7$ Hz), 3.85 (2H, s, 2 × 5'), 3.71 (1H, bs, half-width = 5.8 Hz), 2.88–2.60 and 2.30–1.80 (unresolved, 4H); ¹³C NMR (DMSO- d_6) 165.93, 152.10, 151.95, 150.59, 142.77, 133.64, 132.70, 128.73, 125.59 (adenine), 80.80, 72.13 (C-5'), 62.21, 29.45, 24.99; MS (thiglycerol) calcd for $C_{17}H_{17}N_5O_3 + H$ 340.1410, found 340.1413.

(2',3'-Dideoxy- β -D-glycero-pentopyranosyl)uracil (52) and α Anomer 53. Compounds 52 and 53 were prepared from 41 and 42, respectively, as described for N-benzoyladenine counterparts and purified by column chromatography using CH₂Cl₂-MeOH (10:1) system.

52: mp 200-202 °C (crystallized CH₂Cl₂-MeOH); ¹H NMR (DMSO- d_6) 11.30 (bs), 7.66 (d, 1H, $J_{65} = 8.1$ Hz), 5.60 (d, 1H, $J_{56} = 8.1$ Hz), 5.45 (dd, 1H, $J_{1'2'eq} = 4.0$ Hz, $J_{1'2'ax} = 9.2$ Hz), 3.88 (ddd, 1H, $J_{5'eq5'ax} = 11.0$ Hz, $J_{5'eq4'} = 4.0$ Hz, J = 1.5 Hz), 3.60-3.47 (m, 1H), 3.19 (t, 1H, $J_{5'ax4'} = 10.4$ Hz, $J_{5'ax5'eq} = 10.4$ Hz), 2.02 (dt, 1H, $J_{3'eq3'ax} = 11.6$ Hz, $J_{3'eq4'} = J_{3'eq2'ax} = 3.1$ Hz), 1.85-1.71 (unresolved, 2H), 1.51 (dq, 1H, $J_{3'ax2'eq} = 5.1$ Hz, $J_{3'ax3'eq} = J_{3'ax4'} = J_{3'ax2'ax} = 11.4$ Hz); ¹³C NMR (DMSO- d_6) 163.24, 150.41, 141.03, 101.97, 81.19, 72.40 (C-5'), 63.92, 31.70, 28.30; MS (thioglycerol) calcd for C₉H₁₂N₂O₄ + H 213.0875, found 213.0864.

53: mp 173–178 °C (crystallized CH₂Cl₂-MeOH); ¹H NMR (DMSO-*d*₆) 11.34 (bs, 1H), 7.75 (d, 1H, $J_{65} = 8.1$ Hz), 5.66 (d, 1H, $J_{56} = 8.1$ Hz), 5.51 (dd, 1H, $J_{1'2'eq} = 1.9$ Hz, $J_{1'2'ax} = 10.5$ Hz), 4.85 (bs, 1H), 3.84 (d, 1H, $J_{5'eq5'ax} = 12.1$ Hz), 3.71 (dd, 1H, $J_{5'ax4'} = 10.0$ Hz, $J_{5'ax5'eq} = 12.2$ Hz), 3.59 (bs, 1H), 2.40–2.25 (unresolved, 2 H), 2.16–1.93 (m, 1H), 1.52 (dq, 1H, $J_{2'eq2'ax} = 12.1$ Hz, J = 2.6 Hz); ¹³C NMR (DMSO-*d*₆) 163.27, 150.32, 141.14, 101.94, 81.10, 72.64 (C-5'), 61.95, 29.23, 24.39; MS (thioglycerol) calcd for C₉H₁₂N₂O₄ + H 213.0875, found 213.0864.

Acknowledgment. Dr. Jef Rozenski, Rega Institute, is acknowledged for exact mass measurements and Mieke Vandekinderen for editorial work.

Supporting Information Available: Copies of ¹³C NMR spectra of **17**, **20–25**, **27–44**, **46**, **48–50**, **52**, **53**, **56**, and **57** and details of crystallographic data collections and refinement parameters (36 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

JO950832T